SCHLENKER ENTERPRISES LTD. Phone: +1-708-449-5700 Fax: +1-708-449-5703 www.schlenkent.com e-mail: sales@schlenkent.com

measure. analyze. innovate.

Type 4504A...

Torque Measuring Flange

Short Profile, Robust, Bearingless, High Accuracy

Type 4504A... torque measuring flanges operate on the strain gage principle. The integral, digital measurement preconditioning system produces analog or digital output signals, which are transmitted without contact. The rotor runs in the stator ring without mechanical bearings and is therefore free from wear.

- Accuracy class 0.1 and 0.05 for frequency and voltage output available
- Dust and moisture proofed magnetic speed/angle acquisition system with high resolution (adjustable up to 3,600 pulses/rev.)
- Identification, parameterization, measuring and zero point taring via RS-232C is standard
- Non-sensitive in critical built-in situations, that means no field absorbability at rotor excitation by metal components in close proximity
- Very short axial dimensions
- Compact flange-to-flange solution
- Digital non-contact signal transmission
- Maintanance-free, bearingless
- Electrical control signal to test sensor functions
- Conforming to C€

Description

Type 4504A... torque measuring flange was designed to be a very short flange-to-flange solution and its rotor can be installed from one side (normally the test specimen side), straight to the flange of the loading machine. This allows easy, cost-effective assembly into a power train. Speed acquisition system is fully integrated within sensor construction.

The torque flange can be mounted directly to the loading machine. Stator ring is positioned over the rotational rotor and will be maintained with the stator substructure.

Geometry, dimensions, materials, measuring system and signal transmission are designed especially for raw and complex applications in engine test rigs.

Options

- Frequency output
- Speed measurement up to 3,600 pulses/rev. and 2,560 pulses/rev. (Track A and B)
- Rotational angle measurement, resolution up to 0.02° (Track A and B)
- Separate output signal to connectors C and D
- Calibrated RS-232C output

Application

The extremely narrow profile of the Type 4504A... torque measuring flange makes it very suitable for many test rig applications: Test bed for engines, dynamometer, wheel load simulation, gear boxes, pumps, electric motors and many others.

measure. analyze. innovate.

Technical Data

Mechanical	Basic	Data
------------	-------	------

Туре 4504А			50	100	200	500	1000	2 000	3 000	5 000
Measuring range (nominal torque)	M_{nom}	lbf-ft	36.9	73.8	147.5	368.8	737.6	1,475.2	2,212.8	3,688
Limiting torque	M_{op}	lbf-ft	73.8	147.5	295	737.6	1,475.2	2,950.4	4,425.6	7,376
Rupture torque	M_{rupt}	lbf-ft	>147.5	>295	>590.1	>1,475.2	>2,950.4	>5,900.8	>8,851.2	>14,752
Alternating torque	M_{dyn}	lbf-ft	36.9	73.8	147.5	368.8	737.6	1,475.2	2,212.8	3,688
Nominal speed	n _{nom}	rpm	15,000	15,000	15,000	12,000	12,000	10,000	10,000	8,000
Torsional rigidity	CT	klbf-in/rad	504.5	1,876.2	3,495.8	12,390	22,656	62,835	88,500	132,750
Rotation angle at M _{nom}	φ	0	0.05	0.027	0.029	0.020	0.023	0.016	0.017	0.019
Max. bending moment	MB	lbf-ft	36.9	51.6	103.3	368.8	368.8	737.6	1,180.2	1,844
Max. axial force	F _A	lbf	449.6	449.6	899.2	1,573.7	1,573.7	2,697.7	3,147.3	4,945.8
Max. radial force	$F_{\rm Q}$	lbf	179.8	224.8	674.4	1,348.9	1,798.5	3,372.1	4,046.6	6,744.3
Rotor weight	m _{rotor}	kg	0.8	0.85	1.4	3.00	3.11	4.7	6.60	11.30
Stator weight	m _{stator}	kg	1.2	1.2	1.6	2.10	2.11	2.5	2.50	4.38
Moment of inertia (rotor)	rotor	lbf•ft²•10⁻³	28.4	30.8	78.1	272.2	275.5	667.4	899.3	2,349.7
Partial mass of the rotor	m _{rotor-M}	kg	0.33	0.35	0.40	1.00	1.10	2.2	2.80	4.90
(measurement side)										
also for option N1, N2										
Partial moment of inertia	j _{N1-M}	lbf•ft²•10⁻³	11.4		22.5	89.9	94.7	310.0	397.6	899.8
of the rotor (measurement side)										
also for option N1, N2										
Balancing class	Q						6.3			
Housing material						Hard ano	dized alumir	num		
Protection class							IP54			

General Electrical Specifications

Output signal (rated value)	VDC	±10 (and others
		as an option)
Supply voltage	VDC	11 30
Power consumption	W	<5
Load resistance	kΩ	>10
Limit frequency –3 dB	kHz	1
100 % control input	VDC	"On" 3.5 30
		"Off" 0 2
Control signal	% FSO	100

Electrical Measuring Data

Accuracy class			0.1/opt.	C1: 0.05
Linearity error				
including hysteresis	%	FSO	0.1/opt.	C1: 0.05
Temp. influence on the zero point	%	FSO/°F		0.003
Temp. influence on the nominal value	%	FSO/°F		0.003
Max. deviation with bending moment	%	FSO/lbf-	ft	0.009
Max. deviation with axial force	%	FSO/lbf		0.00064
Max. deviation with radial force	%	FSO/lbf		0.00055
NP stability (for 24 h)	%	FSO		0.03

Reference temperature	°F	72 ±2
Operating temperature range	°F	50 140
(Rated temperature range)		
Service temperature range	°F	32 158
Storage temperature range	°F	–13 176
Speed Measurement		
Speed measurement option N1		
Dulas much an		1

Pulse number		1x60
Max. distance from rotor to probe	in	0.1
(adjustable)		
Speed measurement option N2		
Pulse number (Track A and B)	2>	< 720
Max. distance from rotor to probe	in	0.04
(adjustable)		
Speed measurement option N3		
Pulse number (Track A and B)	2x1	024
Max. distance from rotor to probe	in	0.04
(adjustable)		

Dimensions

Dimensions in mm

Size	Measuring range lbf-ft	b1	b2	b3	e1	e2	ød1 g5	ød2 H6	ød3	ød4	ød5	ød6	TKø	ga	h	øi	øj	m
1	36.9	1.6	0.26	1	0.12	0.10	3.0	3.0	6.8	3.9	4.7	4.9	3.4	M6	6.2	0.25	0.43	0.67
1	73.8	1.6	0.26	1	0.12	0.10	3.0	3.0	6.8	3.9	4.7	4.9	3.4	M6	6.2	0.25	0.43	0.67
2	147.5	1.6	0.33	1.2	0.12	0.10	3.5	3.5	7.6	4.7	5.5	5.7	4.1	M8	6.6	0.33	0.55	0.67
3	368.8	1.6	0.51	1.6	0.12	0.12	4.3	4.3	9.0	6.1	6.9	7.1	5.2	M12	7.3	0.51	0.79	0.67
3	737.6	1.6	0.51	1.6	0.12	0.12	4.3	4.3	9.0	6.1	6.9	7.1	5.2	M12	7.3	0.51	0.79	0.67
4	1,475.2	1.7	0.63	1.7	0.12	0.16	5.5	5.5	10.4	7.5	8.3	8.4	6.5	M14	8.0	0.59	0.87	0.67
4	2,212.8	1.7	0.87	2.2	0.12	0.16	5.5	5.5	10.4	7.5	8.3	8.4	6.5	M14	8.0	0.59	0.87	0.67
5	3,688	2.5	0.83	2.5	0.12	0.16	6.9	6.9	12.3	9.4	10.0	10.2	8.1	M18	8.9	0.75	1.2	1.3

Electrical Connections

Pin Allocation of the 12-Pin Built-in Standard Connector A

Function	PIN	Description	
Supply	F	+U _B	+ 11 + 30 VDC, power consumption approx. 4 W
11.5	А	GND	Ground relating to +U _B
Shield	Μ		In the sensor on housing
Torque output	С	U_A/F_A	0±10 V (Opt. B1)
			100±40 kHz (Opt. B2)
			60±20 kHz (Opt. B3)
			10±5 kHz (Opt. B4)
	D	SGND	Ground relating to U_A
Speed pulses	Н	Track A	TTL-level
	G	Track B	Track B with option N2 only
	J		not connected
100% control input	К	Control	Off: 0 2 VDC
			On: 3.5 30 VDC
			$R_{i.k.} = 10 \ k\Omega$
RS-232C interface to the	В	TXD	Digital send path to the UMV
UMV 3000	L	RXD	Digital receive path
Digital ground	E	DGND	Ground relating to speed pulses, calibration-/control input,
			RS-232C interface

Pin Allocation of the 7-Pin Built-in Standard Connector B

	Function	PIN	Description	
	-	1	n.c.	
4	-	2	n.c.	
5	Digital mass potential	3	DGND	Ground relating the RS-232C interface
	100% control input	4	Control	Off: 0 2 VDC
				On: 3.5 30 VDC
	RS-232C interface	5	TXD	Serial send path of the torque sensor
\sim		6	RXD	Serial receive path of the torque sensor
\smile		7	OGND	

Fig. 1: Pin allocation of the built-in connector A and B (standard)

4504A_000-598a-11.07

measure. analyze. innovate.

Electrical Connections

Pin Allocation of the 7-Pin Built-in Connector C, Option P

	Desig	nation	PIN	Descr	iption			
	Voltage	Frequency		Voltage	Frequency			
			1	Ground relating to U_A	F _A , amplitude: 5 VDC			
	AGND	F _A /AGND**			RS-422/**Reference point for			
					12 VDC amplitude			
4	GND		2	+U _B				
////3● ● ⊑\\\\	+U _B		3	+11 +30 VDC, power input 4 W				
	U _A	F _A	4	0 ±10 V	F _A			
$\left(\left(1 \bullet ^{7} \bullet 6 \right) \right) \right)$	20		5	Reference point for U _A	Ground relating to F _A			
	II.C.	AGND			(at RS-422 for F_A)			
	Cor	Cantual		Potential free control i	nput Off: 0 2 VDC/			
				On: 3.5 30 V	DC, $R_{LK} = 10 \text{ k}\Omega$			
	00	IND	7	Ground relat	ing to control			

Pin Allocation of the 8-Pin Built-in Connector D, Option P

	PIN	Description
	1	Track A RS-422, double frequency TTL signal **
///s_ é_4	2	not connected
	3	Track B RS-422
	4	not connected
7 6////	5	not connected
	6	Track A RS-422
	7	Track B RS-422 signal for direction of rotation **
	8	DGND

** Selectable within sensor

F_A = 100±40 kHz (Opt. B2) 60±20 kHz (Opt. B3) 10±5 kHz (Opt. B4)

Fig. 2: Pin allocation of the built-in connector C and D (option B5 or B6)

Mounting

Threaded Joint of Rotor, Fastening Bolts

Nominal torque M _{nom}	lbf-ft	36.9	73.8	147.5	368.8	737.6	1,475.2	2,212.8	3,688
Thread		M6	M6	M8	M12	M12	M14	M14	M18
Quality class		10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9
Min.mounting depth	in	0.24	0.24	0.32	0.51	0.51	0.63	0.83	0.89
Max. mounting depth	in	0.59	0.59	0.63	0.87	0.87	1.0	1.2	1.4
Fastening torque M _{fast}	lbf-ft	10.3	10.3	25.1	73.8	84.8	136.5	136.5	295
Balancing class	Q					6.3			
Counterflange flatness	in					0.0004			
Counterflange concentric.	in					8000.0			
Max. delay rotor to stator									
Axial	in	±0.039							
Radial	in					±0.079			

Important: mounting depth has to be strictly observed!

Lever arm

Application Examples

Page 6/7

Loading machine (locked)

measure. analyze. innovate.

Included Accessories		Ordering Key					
None		Тур	e 4504A				
Optional Accessories	Type/Art. No.	Measuring Ranges in lbf-ft*					
Connection cable, 5 m	KSM007203	36.9	50				
• Connection cable, 5 m, 12 pin - open end	s KSM012497	73.8	100				
• Connection cable, 5 m, 7 pin – open ends	KSM021971	147.5	200				
Connection cable, 2.5 m,		368.8	500				
12 pin – UMV 3000	KSM018642	737.6	1K				
• Female connector 7 pin (plug C)	KSM000517	1,475.2	2K				
• Female connector 8 pin (plug D)	KSM013136	2,212.8	ЗK				
• UMV 3000 Supply and evaluation	4700A	3,688	5K				
 Adapter flanges (on request) 		Output Signal*					
Couplings (on request)		Analog output 0±10 V	B1				
Sensor Tool ST 2006	4706A	Frequency output 100 \pm 40 kHz	B2				
		Frequency output 60 \pm 20 kHz	B3				
Our torque calibration service lab DKD-K-37701 offers trace-		Frequency output 10 \pm 5 kHz	B4				
able recalibration of any brands.		Increased Accuracy					
For further information of cable and connector see data sheet KSM_000-615.		Without	0				
		Increased accuracy	С				
		Interface					
		Without	00				
		RS-232C calibration	D1				
Order example without options: Type 45	04A1KB100000N1						
		Connector					
Torque sensor: rated torque 737.6 lbf-ft,		Without	0				
Analog output 0±10 V		Connector C + D	Р				
Speed measurement with 1x60 pulses							
		Speed*					
		Speed measurement with	N1				
Order example with options: Type 45	04A1KB20D10N2	60 pulses					
		Speed measurement with	N2				
Torque sensor: rated torque 737.6 lbf-ft, B2: Frequency output		2x720 pulses		 _	_	_	
100±40 kHz, 0: Without increased output, 00: Without interface,		Speed measurement with	N3				
N2: Speed measurement with 2x720 pulses (100 \pm 40 kHz)		2x1 024 pulses					

* One option has to be defined.

SCHLENKER ENTERPRISES LTD.

Phone: +1-708-449-5700 Fax: +1-708-449-5703 www.schlenkent.com e-mail: sales@schlenkent.com